Home
Class 12
MATHS
intx^(5)/sqrt(1+x^(3))dx=...

`intx^(5)/sqrt(1+x^(3))dx=`

A

(a) `2/3sqrt((1+x^(3))+(x^(2)+2))+c`

B

(b) `2/9sqrt((1+x^(3))(x^(3)+4))+c`

C

(c) `2/9sqrt(1+x^(3))(x^(3)-2)+c`

D

(d) `2/9sqrt((1+x^(3))(x^(2)-2))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of intx^(3)/sqrt(1+x^(4))dx is

intx/sqrt(x^(4)-4)dx=

int_(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx=

intx^(2)/(1+x^(6))dx is equal to

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, then P(3)+Q(3)=

intx^(4)/((x-1)(x^(2)+1))dx=