Home
Class 12
MATHS
inttan^(-1)xdx=….+C...

`inttan^(-1)xdx=….+C`

A

(a) `xtan^(-1)x+1/2logabs(1+x^(2))+c`

B

(b) `xtan^(-1)x-1/2logabs(1+x^(2))+c`

C

(c) `(x-1)tan^(-1)x+c`

D

(d) `xtan^(-1)-logabs(1+x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

intsin^(-1)xdx

inttan(sin^(-1)x)dx=

Evaluate the following: intxsin^(-1)xdx

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

If I_(1)=intsin^(-1)xdx and I_(2)=intsin^(-1)sqrt(1-x^(2))dx, then

IF int_0^1tan^-1xdx=p ,then int_0^1tan^-1((1-x)/(1+x))dx=

int tan(sin^(-1) x) dx=........... A) (1-x^2)^(1/2) + c B) -(1-x^2)^(1/2) + c C) frac{tan^(m)x}{sqrt (1-x^2} + c D) - sqrt (1-x^2) + c

int xcos^(2)xdx=