Home
Class 12
MATHS
If I=inttan^(-1)((2x)/(1-x^(2)))dx, " th...

If `I=inttan^(-1)((2x)/(1-x^(2)))dx, " then ", I-2x tan^(-1)x=`

A

(a) `log(1+x^(2))+c`

B

(b) `log((2x)/(1-x^(2)))+c`

C

(c) `-log(1+x^(2))+c`

D

(d) `-log(1-x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(tan^(-1)x))/(1+x^2)dx

inttan^(-1)sqrt((1-x)/(1+x))dx=

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int(e^(tan^-1x))/(1+x^2)dx =

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

inttan(sin^(-1)x)dx=

int tan^(-1)( sqrt((1-cos2x)/(1+cos2x)))dx