Home
Class 12
MATHS
int(xtan^-1x)/(1+x^2)^(3/2)dx=...

`int(xtan^-1x)/(1+x^2)^(3/2)dx=`

A

(a) `(x+tan^(-1)x)/sqrt(1+x^(2))+c`

B

(b) `(x-tan^(-1)x)/sqrt(1+x^(2))+c`

C

(c) `(tan^(-1)x-x)/sqrt(1+x^(2))+c`

D

(d) `(1-tan^(-1)x)/sqrt(1+x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2xtan^-1x^2)/(1+x^4)dx =

int(e^(tan^-1x))/(1+x^2)dx =

int1/(x^(2)-x^(3))dx=

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

int(x+1)/x^(1/2)dx=

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

Evaluate: \int_{0}^(1/(sqrt 2)) frac{sin^-1x}{(1-x^2)^(3/2)} dx

int1/(x^(2)+2x+2)^(2)dx=

int1/x^(2)(2x+1)^(3)dx=