Home
Class 12
MATHS
inte^(x)[tanx-log(cosx)]dx=...

`inte^(x)[tanx-log(cosx)]dx=`

A

`e^(x)log(secx)+c`

B

`e^(x)log(cosecx)+c`

C

`e^(x)log(cosx)+c`

D

`e^(x)log(sinx)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^x[tanx -log(cosx)] dx =

inte^(x)(sinx+cosx)dx=?

inte^(x)(1+tanx+tan^(2)x)dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

inte^(x)((1-sinx)/(1-cosx))dx=

int_(-a)^(a)sinxf(cosx)dx=

Evaluate: int(1+tanx)/(x+logsecx)dx

int(sec^(2)x)/((1+tanx))dx

int(1)/(tanx+cotx)dx=