Home
Class 12
MATHS
inte^(x)(1+tanx+tan^(2)x)dx=...

`inte^(x)(1+tanx+tan^(2)x)dx=`

A

`e^(x)sinx+c`

B

`e^(x)cosx+c`

C

`e^(x)tanx+c`

D

`e^(x)secx+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^x(1 + tan x + tan^2x) dx =

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int((1+tan)/(1-tanx))^(2)dx=

inte^(x)tan^(2)(e^(x))dx=

Solution of e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x) is....a) logy=e^-xtanx+c b) logy=e^xtanx+c c) tanx=logy+c d) tanx=logy+c

int(sec^(2)x)/((1+tanx))dx

inte^(x)(1+tanx)secxdx=

inte^(x)[tanx-log(cosx)]dx=

int((1+tanx)/(1-tanx))dx

int(xe^(x))/((x+1)^(2))dx=