Home
Class 12
MATHS
intx^(2)/((x^(2)+2)(x^(2)+3))dx=...

`intx^(2)/((x^(2)+2)(x^(2)+3))dx=`

A

(a) `-sqrt(2)tan^(-1)x+sqrt(3)tan^(-1)x+c`

B

(b) `-sqrt(2)tan^(-1)(x/sqrt(2))+sqrt(3)tan^(-1)(x/sqrt(3))+c`

C

(c) `sqrt(2)tan^(-1)(x/sqrt(2))+sqrt(3)tan^(-1)(x/sqrt(3))+c`

D

(d) `sqrt(2)tan^(-1)x+sqrt(3)tan^(-1)x+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(5x^(2)+3)/(x^(2)(x^(2)-2))dx=

intx^(5).e^(x^(2))dx=

intx^(4)/((x-1)(x^(2)+1))dx=

intx/((x-1)(x^(2)+1))dx=

The value of int_(3)^(5)(x^(2))/(x^(2)-4) dx is

int(dx)/(x^(2)-2x+2)=

int1/(x^(2)-x^(3))dx=

intxe^(x^(2)log2)e^(x^(2))dx="________"+c