Home
Class 12
MATHS
int(dx)/(e^(x)+1-2e^(-x))=...

`int(dx)/(e^(x)+1-2e^(-x))=`

A

(a) `logabs(e^(x)-1)-logabs(e^(x)+2)+c`

B

(b) `1/2logabs(e^(x)-1)-1/3logabs(e^(x)+2)+c`

C

(c) `1/3logabs(e^(x)-1)-1/3logabs(e^(x)+2)+c`

D

(d) `1/3logabs(e^(x)-1)+1/3logabs(e^(x)+2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(2x)-3e^(x))=

int(dx)/(1+e^x) =

int(dx)/(e^(x)+e^(-x)+2) is equal to

int (dx)/(e^x + e^-x)

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int(e^x)/((1+e^x)(2+e^x))dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int(dx)/(sqrt(1-e^(2x))) is equal to