Home
Class 12
MATHS
intx/((x-1)(x^(2)+1))dx=...

`intx/((x-1)(x^(2)+1))dx=`

A

(a) `1/2log(x-1)-1/4log(x^(2)+1)-1/2tan^(-1)x+c`

B

(b) `1/2log(x-1)+1/4log(x^(2)+1)-1/2tan^(-1)x+c`

C

(c) `1/2log(x-1)-1/2log(x^(2)+1)-1/2tan^(-1)x+c`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^(4)/((x-1)(x^(2)+1))dx=

intx/((x-1)(x-2))dx

int x/((x-2)(x-1)) dx =

int(x-1)/((x+1)^2) dx =

int(xe^(x))/((x+1)^(2))dx=

int (xe^x)/((x+1)^2) dx =

intx/(x^(4)-1)dx=

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

intx^(2)/((x^(2)+2)(x^(2)+3))dx=