Home
Class 12
MATHS
intx^(4)/((x-1)(x^(2)+1))dx=...

`intx^(4)/((x-1)(x^(2)+1))dx=`

A

(a) `(x(x+2))/2+(logabs(x-1))/2-(logabs(x^(2)+1))/4-tan^(-1)x/2+c`

B

(b) `(x(x+2))/2+(logabs(x-1))/2+(logabs(x^(2)+1))/4-tan^(-1)x/2+c`

C

(c) `(x(x+2))/2+(logabs(x-1))/2+(logabs(x^(2)+1))/4+tan^(-1)x/2+c`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

intx/((x-1)(x^(2)+1))dx=

int1/((x-1)sqrt(x^(2)-4))dx=

intx/((x-1)(x-2))dx

intx/(x^(4)-1)dx=

intx^(4)e^(2x)dx=

intx^(2)/((x^(2)+2)(x^(2)+3))dx=

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, then P(3)+Q(3)=

int(x-1)/((x+1)^2) dx =