Home
Class 12
MATHS
If int(1)/(f(x))dx=log[f(x)]^(2)+c, then...

If `int(1)/(f(x))dx=log[f(x)]^(2)+c`, then `f(x)=`

A

(a) `2x+alpha`

B

(b) `x/2+alpha`

C

(c) `x+alpha`

D

(d) `x^(2)+alpha`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

int(f'(x))/([f(x)]^2)dx =

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

int(f'(x))/([f(x)]^(2))dx=

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

If int_(-1)^(1)f(x)dx=0 then

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=