Home
Class 12
MATHS
inte^(xloga).e^(x)dx is equal to...

`inte^(xloga).e^(x)dx` is equal to

A

(a) `(ae)^(x)+c`

B

(b) `(ae)^(x)/(log(ae))+c`

C

(c) `e^(x)/(1+loga)+c`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1+x)/(x+e^(-x))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int1/(1+e^(x))dx is equal to

int(x+1)(x+2)^7(x+3)dx is equal to

d/(dx) (e^(x^3)) is equal to

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to