Home
Class 12
MATHS
The value of int(e^(6logx)-e^(5logx))/(e...

The value of `int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx` is equal to

A

(a) `x^(3)/3+c`

B

(b) `1/x+c`

C

(c) `0`

D

(d) `3/x^(3)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

int32x^(3)(logx)^(2) dx is equal to

int{(logx-1)/(1+(logx)^(2))}^(2) dx is equal to

The value of int(logx)/(x+1)^(2)dx is

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

int(log(logx))/(x.logx)dx=

Evaluate int(1+logx)^2/xdx