Home
Class 12
MATHS
Let I(n)=inttan^(n)xdx , n gt 1. I(4)+I...

Let `I_(n)=inttan^(n)xdx , n gt 1`. `I_(4)+I_(6)=atan^(5)x+bx^(5)+C` ,
where C is a constant of integration , then the ordered pair ( a , b) is equal to

A

(a) `(-1/5,0)`

B

(b) `(-1/5,1)`

C

(c) `(1/5,0)`

D

(d) `(1/5,-1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int x^(n)e^(x)dx, then I_(5)+5I_(4)=

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to

If n is any positive integer, then the value of frac{i^(4n+1)-i^(4n-1)}{2} equals

If (1-i)^n = 2^n , then n is equal to

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?

Let I=int_0^n[x]dx,n > 0, where [ ] is G.I.F.,