Home
Class 12
MATHS
int(cosx)/(sqrt(1+sinx))dx is equal to...

`int(cosx)/(sqrt(1+sinx))dx` is equal to

A

`sin(x/2)-cos(x/2)+c`

B

`sin(x/2)+cos(x/2)+c`

C

`2[sin(x/2)-cos(x/2)]+c`

D

`2[sin(x/2)+cos(x/2)]+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(1+sinx))dx=

int(sinx+cosx)/(sqrt(1+sin2x))dx

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

The value of inte^(x)[(1+sinx)/(1+cosx)]dx is equal to

inte^(sinx)((sinx+1)/(secx))dx is equal to

int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=

int 2sinx cos x dx is equal to

int1/(sinxsqrt(sinx.cosx))dx=