Home
Class 12
MATHS
int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))...

`int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx=`

A

`1/4cos[tan^(-1)(x^(4))]+c`

B

`1/4sin[tan^(-1)(x^(4))]+c`

C

`(-1)/4cos[tan^(-1)(x^(4))]+c`

D

`1/4sec[tan^(-1)(x^(4))]+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^3)/((1+x^8)) dx

int(((x^2+2)a^((x+tan^(- 1)x)))/(x^2+1))dx=

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int(e^(tan^(-1)x))/(1+x^2)dx

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

int(e^(x)(1+x))/(sin (xe^(x)))dx

int tan^-1((sin x)/(1+ cos x)) dx =

int(e^(tan^-1x))/(1+x^2)dx =

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is