Home
Class 12
MATHS
int(dx)/(e^(x)+e^(-x)+2) is equal to...

`int(dx)/(e^(x)+e^(-x)+2)` is equal to

A

`1/(e^(x)+1)+c`

B

`(-1)/(e^(x)+1)+c`

C

`1/(1+e^(-x))+c`

D

`1/(e^(-x)-1)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(2x)-3e^(x))=

int(dx)/(1+e^x) =

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int(dx)/(e^(x)+1-2e^(-x))=

int(x+3)/(x+4)^(2)e^(x)dx is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to