Home
Class 12
MATHS
If int1/((1+x)sqrt(x))dx=f(x)+A, where A...

If `int1/((1+x)sqrt(x))dx=f(x)+A`, where A is any arbitrary constant,
then the function f(x) is

A

(a) `2tan^(-1)x`

B

(b) `2tan^(-1)sqrt(x)`

C

(c) `2cot^(-1)sqrt(x)`

D

(d) `log_(e)(1+x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

intcos(logx)dx=F(x)+c , where c is an arbitrary constant. Here F(x)=

int1/((x-1)sqrt(x^(2)-4))dx=

inte^(sqrt(x) dx is equal to (A is an arbitrary constant)

int1/sqrt(8+2x-x^(2))dx=

int(2x+3)/((x-1)(x^2+1))dx =log_e{(x-1)^(5/2)(x^2+1)^a}-1/2 tan^-1 x+C,x > 1 where C is any arbitrary constant, then the value of ' a' is

IF f(x)=x,-1lexle1 , then function f(x) is

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

int sqrt((1+x)/(1-x)) dx =

int_0^1sqrt((1-x)/(1+x))dx