Home
Class 12
MATHS
If I=int(dx)/sqrt((1-x)(x-2)), then I is...

If `I=int(dx)/sqrt((1-x)(x-2))`, then I is equal to

A

(a) `sin^(-1)(2x-3)+C`

B

(b) `sin^(-1)(2x+5)+C`

C

(c) `sin^(-1)(3-2x)+C`

D

(d) `sin^(-1)(5-2x)+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/sqrt(2x-x^2)

int(dx)/(sqrt(1-16x^2) =

int(dx)/(sqrt(x+3)-sqrt(x+2))

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

int_0^1sqrt((1-x)/(1+x))dx

int_0^2sqrt((2+x)/(2-x))dx is equal to

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to