Home
Class 12
MATHS
If I=int(sin2x)/((3+4cosx)^(3))dx , then...

If `I=int(sin2x)/((3+4cosx)^(3))dx` , then `I=`

A

(a) `(3cosx+8)/(3+4cosx)^(2)+C`

B

(b) `(3+8cosx)/(16(3+4cosx)^(2))+C`

C

(c) `(3+cosx)/(3+4cosx)^(2)+C`

D

(d) `(3-8cosx)/(16(3+4cosx)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^(2)x)/(1+cosx)dx=

int(sin^3 2x)/(cos^5 2x)dx=

int(dx)/(5+4cosx)=

int (sin2x)/(sin^4x+cos^4x) dx

int(sin^3 2x)/(cos^5 2x) dx =

int(sin2x)/(1+sin^(2)x)dx=

int(sin2x)/(sin5x.sin3x)dx=

int_(0)^(pi)(dx)/((5+4cosx))

If I=int(dx)/sqrt((1-x)(x-2)) , then I is equal to