Home
Class 12
MATHS
If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=in...

If `I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx.`
Then for an arbitrary constant c, the value of `J-I` equal to

A

(a) `1/2logabs((e^(4x)-e^(2x)+1)/(e^(4x)+e^(2x)+1))+C`

B

(b) `1/2logabs((e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1))+C`

C

(c) `1/2logabs((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C`

D

(d) `1/2logabs((e^(4x)+e^(2x)+1)/(e^(4x)-e^(2x)+1))+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(1+e^x) =

int(dx)/(e^(2x)-3e^(x))=

int(dx)/(e^(x)+1-2e^(-x))=

inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=

int(e^x)/((1+e^x)(2+e^x))dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int1/((e^(2x)+e^(-2x))^(2))dx=