Home
Class 12
MATHS
The integral int (sec^2x)/(secx+tanx)^(9...

The integral `int (sec^2x)/(secx+tanx)^(9/2)dx` equals to (for some arbitrary constant `K`)

A

`(-1)/(secx+tanx)^(11//2){1/11-1/7(secx+tanx)^(2)}+K`

B

`(1)/(secx+tanx)^(11//2){1/11-1/7(secx+tanx)^(2)}+K`

C

`(-1)/(secx+tanx)^(11//2){1/11+1/7(secx+tanx)^(2)}+K`

D

`(1)/(secx+tanx)^(11//2){1/11+1/7(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(secx+tanx)^(2)dx=

int(sec^(2)x)/((1+tanx))dx

inte^(sqrt(x) dx is equal to (A is an arbitrary constant)

int(tanx)/(secx+tanx)dx=

int (sec x+tan x)^2 dx =

The integral int(dx)/(x^(2)(x^(4)+1)^(3//4)) equal

int{1+2tanx(tanx+secx)}^(1//2)dx is equal to

int_(0)^(pi//8) (sec^(2) 2x)/2 dx is equal to