Home
Class 12
MATHS
intx^(4)e^(2x)dx=...

`intx^(4)e^(2x)dx=`

A

(a) `e^(2x)/4(2x^(4)-4x^(3)+6x^(2)-6x+3)+c`

B

(b) `e^(2x)/2(2x^(4)-4x^(3)+6x^(2)-6x+3)+c`

C

(c) `e^(2x)/8(2x^(4)-4x^(3)+6x^(2)+6x+3)+c`

D

(d) `-e^(2x)/4(2x^(4)-4x^(3)+6x^(2)+6x+3)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: intx^(2)e^(3x)dx

intx^(2)secx^(3)dx=

intx/(x^(4)-1)dx=

intx^(5).e^(x^(2))dx=

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

inte^(x)tan^(2)(e^(x))dx=

intxe^(x)dx=?