Home
Class 12
MATHS
If int log (a^(2)+x^(2))dx=h(x)+c, then ...

If `int log (a^(2)+x^(2))dx=h(x)+c`, then `h(x)=`

A

(a) `xlog(a^(2)+x^(2))+2tan^(-1)(x/a)+c`

B

(b) `x^(2)log(a^(2)+x^(2))+x+atan^(-1)(x/a)+c`

C

(c) `xlog(a^(2)+x^(2))-2x+2atan^(-1)(x/a)+c`

D

(d) `x^(2)log(a^(2)+x^(2))+2x-a^(2)tan^(-1)(x/a)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int (cos(log x))/x dx =

int_0^1log(1+x)/(1+x^2)dx

int1/(log a)(a^x cos a^x)dx =

int(sec^2(log x))/x dx =

int_(0)^(pi)log sin^(2)x dx=