Home
Class 12
MATHS
intcos^-1(1/x)dx=...

`intcos^-1(1/x)dx=`

A

(a) `xsec^(-1)x-logabs(sqrt((x^(2)-1))+x)+c`

B

(b) `sec^(-1)x-xlogabs(sqrt((x^(2)-1))+x)+secx+c`

C

(c) `xsec^(-1)x+x^(2)logabs(sqrt((x^(2)-1))+x)+c`

D

(d) `xsec^(-1)x+logabs(sqrt((x^(2)-1))+x)+x+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/(1+cos^(2)x)dx=

intcos(logx)dx=F(x)+c , where c is an arbitrary constant. Here F(x)=

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

If int_(-1)^(1)f(x)dx=0 then

If intxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then

int(x+1)/x^(1/2)dx=

intsqrt(x)/(1+x)dx=