Home
Class 12
MATHS
The value of int(e^(x)(x^(2)tan^(-1)x+ta...

The value of `int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx` is equal to

A

(a) `tan^(-1)(e^(x))+c`

B

(b) `e^(tan^(-1)x)+c`

C

(c) `e^(x)tan^(-1)x+c`

D

(d) `tan^(-1)(x^(e))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int1/(1+e^(x))dx is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

d/(dx)(tan^(- 1)(2/(x^(- 1)-x))) is equal to

int(1+x)/(x+e^(-x))dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(1)^(e)1/x dx is equal to

int(e^(tan^(-1)x))/(1+x^2)dx