Home
Class 12
MATHS
inte^(tanx)(sec^(2)x+sec^(3)x sinx)dx is...

`inte^(tanx)(sec^(2)x+sec^(3)x sinx)dx` is equal to

A

`secx*tanx*e^(x)+c`

B

`tanx*e^(tanx)+c`

C

`sec^(2)x*e^(tanx)+c`

D

`tan^(2)x*e^(tanx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cotxtanx)/(sec^(2)x-1)dx=

int 2sinx cos x dx is equal to

inttan(3x-5)sec(3x-5)dx is equal to

int_(0)^(pi//8) (sec^(2) 2x)/2 dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

int(x+3)/(x+4)^(2)e^(x)dx is equal to

int(x+1)(x+2)^7(x+3)dx is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to: a) 2/3 b) 1/6 c) 2 d) 1/3

int(cot x tanx)/(sec^2 x-1)dx =