Home
Class 12
MATHS
inte^(sinx)((sinx+1)/(secx))dx is equal ...

`inte^(sinx)((sinx+1)/(secx))dx` is equal to

A

`sinx.e^(sinx)+c`

B

`cosx.e^(sinx)+c`

C

`e^(sinx)+c`

D

`e^(sinx)(sinx+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)((1-sinx)/(1-cosx))dx=

The value of inte^(x)[(1+sinx)/(1+cosx)]dx is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int 2sinx cos x dx is equal to

int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx is equal to

int(cosx)/(sqrt(1+sinx))dx is equal to

int(sinx)/(sinx-cosx)dx=

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to: a) 2/3 b) 1/6 c) 2 d) 1/3

int(2-sinx)/(2+cosx)dx=