Home
Class 12
MATHS
int (xdx)/((x^(2)-a^(2))(x^(2)-b^(2)))=...

`int (xdx)/((x^(2)-a^(2))(x^(2)-b^(2)))=`

A

(a) `1/(a^(2)-b^(2))log((x^(2)-a^(2))/(x^(2)-b^(2)))+c`

B

(b) `1/(a^(2)-b^(2))log((x^(2)-b^(2))/(x^(2)-a^(2)))+c`

C

(c) `1/(2(a^(2)-b^(2)))log((x^(2)-a^(2))/(x^(2)-b^(2)))+c`

D

(d) `1/(2(a^(2)-b^(2)))log((x^(2)-b^(2))/(x^(2)-a^(2)))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x-x^(2))=

int(dx)/(x^(2)-2x+2)=

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

int (dx)/sqrt(2x-x^2)

int(5x^(2)+3)/(x^(2)(x^(2)-2))dx=

int1/((e^(2x)+e^(-2x))^(2))dx=

Integrate the following w.r.t. x: int frac{x}{(x^2 - a^2 )(x^2-b^2)} dx

int_(2)^(3)(dx)/(x^(2)-x)=

int_(0)^(1)(dx)/(x^(2)-2x+2)=