Home
Class 12
MATHS
int(dx)/(e^(2x)-3e^(x))=...

`int(dx)/(e^(2x)-3e^(x))=`

A

(a) `1/(3e^(x))-x/9+1/9log(e^(x)+3)+c`

B

(b) `1/(3e^(x))+1/9log(e^(x)-3)-x/9+c`

C

(c) `-1/(3e^(x))-x/9+c`

D

(d) `-1/(3e^(x))-1/9log(e^(x)+3)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+1-2e^(-x))=

int(dx)/(e^(x)+e^(-x)+2) is equal to

int(dx)/(1+e^x) =

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int (dx)/(e^x + e^-x)

inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=

inte^(x)tan^(2)(e^(x))dx=

int(x+3)/(x+4)^(2)e^(x)dx is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to