Home
Class 12
MATHS
int(2x+3)/((x-1)(x^2+1))dx =loge{(x-1)^(...

`int(2x+3)/((x-1)(x^2+1))dx =log_e{(x-1)^(5/2)(x^2+1)^a}-1/2 tan^-1 x+C,x > 1`
where `C` is any arbitrary constant, then the value of '`a'` is

A

(a) `5/4`

B

(b) `-5/3`

C

(c) `-5/6`

D

(d) `-5/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int((1+x)^2)/(x(1+x^2))dx

int(e^x)/((1+e^x)(2+e^x))dx

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is

int(e^(tan^-1x))/(1+x^2)dx =

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

int(e^(tan^(-1)x))/(1+x^2)dx

int1/((e^(2x)+e^(-2x))^(2))dx=

int(xtan^-1x)/(1+x^2)^(3/2)dx=

int_0^1log(1+x)/(1+x^2)dx