Home
Class 12
MATHS
If intf(x)/(logcosx)dx=-log(logcosx)+c, ...

If `intf(x)/(logcosx)dx=-log(logcosx)+c`, then f(x) is equal to

A

(a) `tanx`

B

(b) `-sinx`

C

(c) `-cosx`

D

(d) `-tanx`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If y=log (log x) then (d^2y)/(dx^2) is equal to

int log x dx is equal to

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

Q. if y=log_10 x , then dy/dx is equal to -

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If y = x^(log x) , then (dy)/(dx) equals