Home
Class 12
MATHS
If int(f(x))/(log(sinx))dx=log[log sinx]...

If `int(f(x))/(log(sinx))dx=log[log sinx]+c`, then f(x) is equal to

A

(a) `cot x`

B

(b) `tan x`

C

(c) `sec x`

D

(d) `cosec x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cotx)/(log(sinx))dx

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

int(log(logx))/(x.logx)dx=

If y=log (log x) then (d^2y)/(dx^2) is equal to

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int log x dx is equal to

inte^(x)[tanx-log(cosx)]dx=

int(sec^2(log x))/x dx =

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .