Home
Class 12
MATHS
If intf(x)cosxdx=1/2[f(x)]^(2)+c," then ...

If `intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2)` is

A

c

B

`pi/2+c`

C

`c+1`

D

`2pi+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)=

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

If f(x)=cos(sinx^2) , then f'(x) at x=sqrt(pi/2) is

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

If f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If f(x) = 2x , then find f'(1).