Home
Class 12
MATHS
If d/dx[f(x)]=xcosx+sinx " and " f(0)=2,...

If `d/dx[f(x)]=xcosx+sinx " and " f(0)=2`,
then f(x)=

A

`xsinx`

B

`xcosx+sinx+2`

C

`xsinx+2`

D

`xcosx+2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+b x^2+c x+d and 0 < b^2 < c , then f(x) is

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

Let f(x) =x^(p) cos (1/x) , when x ne 0 and f(x)=0 , when x=0 . Then f(x) will be differentiable at x=0 , if

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int_-2^3f(x)dx= (A) 0 (B) 1 (C) 2 (D) 3

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to