Home
Class 12
MATHS
If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[...

If `int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c`, then A =

A

(a) `1/2`

B

(b) `1/3`

C

(c) `1/4`

D

(d) `1/6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)log((1+x)/(1-x))dx=

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

If intxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then

inte^(log(1+1/x^(2)))/(x^(2)+1/x^(2))dx=

int_(1)^(2)x log x dx =