Home
Class 12
MATHS
int1/(x^(2)+2x+2)^(2)dx=...

`int1/(x^(2)+2x+2)^(2)dx=`

A

(a) `(tan^(-2)sqrt(x+1))/2+(x+1)/(x^(2)+2x+2)+c`

B

(b) `1/2[sec^(-1)(sqrt(x+1))+(x+1)/(x^(2)+2x+2)]+c`

C

(c) `1/2[tan^(-1)(x+1)+(x+1)/(x^(2)+2x+1)]+c`

D

(d) `(sec^(-1)(sqrt(x+1)))/2+(x+1)/(x^(2)+2x+2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/x^(2)(2x+1)^(3)dx=

int1/(x^(2)-x^(3))dx=

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, then P(3)+Q(3)=

int1/x^(3)[logx^(x)]^(2)dx=

int(dx)/(x^(2)-2x+2)=

int(xe^(x))/((x+1)^(2))dx=

int1/(sinxcos^(2)x)dx=

int1/((e^(2x)+e^(-2x))^(2))dx=