Home
Class 12
MATHS
If intf(x)sinxcosxdx=1/(2(b^(2)-a^(2)))l...

If `intf(x)sinxcosxdx=1/(2(b^(2)-a^(2)))logf(x)+c`,
where c is the constant of integration, then f(x)=

A

`1/(a^(2)sin^(2)x+b^(2)cos^(2)x)`

B

`1/(a^(2)sin^(2)x-b^(2)cos^(2)x)`

C

`1/(a^(2)cos^(2)x-b^(2)sin^(2)x)`

D

`1/(a^(2)cos^(2)x+b^(2)sin^(2)x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2)dx is equal to (where c is a constant of integration)

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)=

intcos(logx)dx=F(x)+c , where c is an arbitrary constant. Here F(x)=