Home
Class 12
MATHS
inte^(sintheta)[log(sintheta)+cosec^(2)t...

`inte^(sintheta)[log(sintheta)+cosec^(2)theta]costheta"d"theta=`

A

(a) `e^(sintheta)[log(sintheta)+cosec^(2)theta]+c`

B

(b) `e^(sintheta)[log(sintheta)+cosectheta]+c`

C

(c) `e^(sintheta)[log(sintheta)-cosectheta]+c`

D

(d) `e^(sintheta)[log(sintheta)-cosec^(2)theta]+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(sintheta+sin 2theta)/(1+costheta+cos2theta)=

intcos2thetalog((costheta+sintheta)/(costheta-sintheta))d theta is equal to

Prove that (frac(sintheta-2sin^3theta)(2cos^3theta-costheta))=tantheta

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

Simplify costheta[[costheta,sintheta],[-sintheta,costheta]+sintheta[[sintheta,-costheta],[costheta,sintheta]]

Show that AB=BA if A=[[costheta,sintheta],[-sintheta,costheta]],B=[[costheta,-sintheta],[sintheta,costheta]]

Show that AB=BA where, A=[[costheta,sintheta],[-sintheta,costheta]],B=[[costheta,-sintheta],[sintheta,costheta]]

Show that: (frac(sin3theta+2sin5theta+sin7theta)(sintheta+2sin3theta+sin5theta))=cos2theta+sin2thetacot3theta

Prove that : (sin theta)/(1 - costheta) = cosec theta + cot theta

Prove 1/(1+sintheta)+1/(1-sintheta) = 2 sec^2 theta