Home
Class 12
MATHS
If int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x) ...

If `int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x) " and " F(1)=0`,
then for `x gt 0, F(x)=`

A

(a) `1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1+x^(2)))+pi/2`

B

(b) `1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1+x^(2)))-pi/(2sqrt(2))`

C

(c) `1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1-x^(2)))+pi/(2sqrt(2))`

D

(d) `1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1-x^(2)))-pi/(2sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

If : f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)+b^(2)))" then: "f'(x)=

If f'(x)=x^2+5 and f(0)=-1 then f(x)=

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

\int_{0}^1 x^2 sqrt(1-x) dx is..........

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0 , is continuous at x = 0, then f(0) is equal to

If int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7, then int_(-1) ^(2) f(x) dx=