Home
Class 12
MATHS
The value of int(logx)/(x+1)^(2)dx is...

The value of `int(logx)/(x+1)^(2)dx` is

A

(a) `(-logx)/(x+1)+logabs(x)-logabs(x+1)+c`

B

(b) `(logx)/(x+1)+logabs(x)-logabs(x+1)+c`

C

(c) `(logx)/(x+1)-logabs(x)-logabs(x+1)+c`

D

(d) `(-logx)/(x+1)-logabs(x)-logabs(x+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

The value of int1/((x-5)^(2))dx is

The value of int(2dx)/sqrt(1-4x^(2)) is

int(x-1)/((x+1)^2) dx =

To find the value of int(1+logx)/(x)dx , the proper substitution is

int(logx)/(x^3)dx=

int(logx)/(x^3)dx=