Home
Class 12
MATHS
If 1/sqrt(2) le x le 1 and sin^(-1)(2xsq...

If `1/sqrt(2) le x le 1` and `sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x`, then (A,B)=

A

(a) `(pi,2)`

B

(b) `(0,2)`

C

(c) `(pi,-2)`

D

(d) `(0,-2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

int sin^(-1) x dx=............ A) x sin^(-1) x + sqrt (1-x^2) + c B) x sin^(-1) x - sqrt (1- x^2) + c C) -x sin^(-1) x + sqrt (1-x^2) + c D) x sin^(-1) x + sqrt (x^2 - 1) + c

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=

If int 1/sqrt(9-16x^(2)) dx = a sin^(-1) (bx) +c , then 4a+3b=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If f(x) = frac{sin^(-1)x}{sqrt (1-x^2)} , g(x)=e^(sin^(-1)x) , then int f(x)g(x) dx =........................ A) e^(sin^(-1)x) (sin^(-1)x-1) + c B) e^( sin^(-1)x) (1- sin^(-1)x) + c C) e^(sin^(-1)x) (sin^(-1)x+1) + c D) -e^(sin^(-1)x) (sin^(-1)x-1) + c

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=