Home
Class 12
MATHS
If x=t log t ,y =t^(t) ,then (dy)/(dx)=...

If ` x=t log t ,y =t^(t) ,then (dy)/(dx)=`

A

(a) `e^(t)`

B

(b) 1 + log t

C

(c) `e^(t)/(1+log t)`

D

(d) `e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x=a(t-sint), y=a(1-cost) , then (dy)/(dx) is equal to

If x=a(cos t + log tan (t/2)) , y =a sin t then (dy)/(dx)=

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x= a(t-1/t), y=a(t+1/t) , then dy/dx =........ A) x/y B) y/x C) -x/y D) -y/x

If x= a cos^3 t, y= a sin^3 t, then dy/dx=..... A) -y/x B) - (y/x)^(1/3) C) (y/x)^3 D) - (y/x)^3