Home
Class 12
MATHS
If the lines (x-2)/(1)=(y-4)/(4)=(z-6)/(...

If the lines `(x-2)/(1)=(y-4)/(4)=(z-6)/(k)` and `(x+1)/(3)=(y+3)/(5)=(z+5)/(7)` are coplanar,
then the value of `k` is

A

(a) `7`

B

(b) `3`

C

(c) `-3`

D

(d) `-7`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3) and (x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

The lines (x-3)/(1)=(y-1)/(2)=(z-3)/(-lambda) and (x-1)/(lambda)=(y-2)/(3)=(z-1)/(4) are coplanar, if value of lambda is

If lines (x+l)/(3)=(y+3)/(5)=(z+5)/(7) and (x-2)/(1)=(y-4)/(3)=(z-6)/(5) are coplanar, then l is equal to

Lines (x)/(1)=(y-2)/(2)=(z+3)/(3)" and "(x-2)/(2)=(y-6)/(3)=(z-3)/(4) are

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

The lines (x-1)/(1)=(y-1)/(2)=(z-1)/(3) and (x-4)/(2)=(y-6)/(3)=(z-7)/(3) are coplanar. Their point of intersection is