Home
Class 12
MATHS
d/(dx) (e^(x^3)) is equal to...

`d/(dx) (e^(x^3))` is equal to

A

`3xe^(x^3)`

B

`3x^(2)e^(x^3)`

C

`3x(e^(x^3))^(2)`

D

`2x^(2)e^(x^3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) (e^(x sin x)) =

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........

d/(dx)[e^xlog(1+x^2)]=

d/(dx)(e^xlogsin2x)=

d/(dx)(e^sqrt(1-x^2).tanx)=

d/(dx)[(e^(ax))/(sin(bx+c))]=

d/(dx) (tan^(-1)((e^(2x)+1)/(e^(2x)-1)))=

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64