Home
Class 12
MATHS
d/(dx) (e^(x sin x))=...

`d/(dx) (e^(x sin x))`=

A

`e^(x sin x)(x cos x + sin x)`

B

`e^(x sin x)(cos x + sin x)`

C

`e^(x sin x)(cos x + sin x)`

D

`e^(x sin x)(x cos x - sin x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)(e^xlogsin2x)=

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

d/(dx) (e^(x^3)) is equal to

d/(dx)[(e^(ax))/(sin(bx+c))]=

d/(dx)[log (sqrt(sin sqrt(e^(x))))]=

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........