Home
Class 12
MATHS
Let f(x) =x^(p) cos (1/x), when x ne 0 a...

Let `f(x) =x^(p) cos (1/x)`, when `x ne 0` and `f(x)=0`, when `x=0`.
Then `f(x)` will be differentiable at `x=0`, if

A

`p gt 0`

B

`p gt 1`

C

`0 lt p lt 1`

D

`1/2 lt p lt 1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(x^(2)(sin)1/x,",","when" x != 0),(0,",","when"x = 0):} , then

If f(x) = {{:(-x, " when "x lt 0),(x^(2), " when "0 le x le 1),(x^(3) -x+1, " when " x gt 1):} then f is differentiable at

Function f(x) = (1-cos 4x)//(8x^(2)), " where " x != 0 , and f(x) = k , where x = 0 , is a continuous function at x = 0 Then : k =

If f(x)={((1)/(e^(1/x)+1),",","when" x != 0),(0,",","when"x = 0):} , then

If f(x)+2f((1)/(x))=3x, x ne 0 and S={x in R: f(x) = f(-x)}, " then " S

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is