Home
Class 12
MATHS
If y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1(...

If `y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1([sqrtx-1]/[sqrtx+1])`, then `dy/dx` is equal to?

A

0

B

1

C

`-1`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^-1((1+x)/(1-x)) , then dy/dx is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

int(e^sqrtx cos(e^sqrtx))/sqrtx dx =

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to

int(cossqrtx)/sqrtx dx =

I fy=sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)),t h e n(dy)/(dx)

IF y=tan^-1((sqrtx-x)/(1+x)^(3/2)) then y'(1) is

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=