Home
Class 12
MATHS
If y = tan^(-1) (sec x - tan x ) , "the...

If ` y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx)` is equal to

A

2

B

`-2`

C

`1/2`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=e^(tan x) , then cos^2 x(d^2y)/(dx^2) is equal to

If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

If y=tan^(-1)[(sinx+cosx)/(cosx-sinx)] then (dy)/(dx) is

If y=(tan x + cot x)/(tan x - cot x) , then (dy)/(dx)=

If y= sec (tan^(-1) (x)) , then dy/dx at x=1 is equal to ......... A) 44198 B) 1 C) 1/sqrt 2 D) sqrt 2

If y=sec x^(@) , then (dy)/(dx)=

If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to