Home
Class 12
MATHS
If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx...

If `f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2`, then `f'(pi/6)` is

A

`-1/4`

B

`-1/2`

C

`1/4`

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot A normal to y=f(x) at x=pi/6 also passes through the point:

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

If f(x)=sqrt(x-2) , for 2 lt x lt 4 , then f(x) is

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

inte^(sinx)(xcosx-secxtanx)dx="______"+c, 0 lt x lt pi/2